Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Jia-Liang Zhong, Yang Lu* and Qi-Tai Zheng

Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, 1 Xiannong Tan Street, Beijing 100050, People's Republic of China

Correspondence e-mail: luy@imm.ac.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.054$
$w R$ factor $=0.135$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 5,7-Dihydroxy-8-methoxy-2-phenyl-4H-chromen-4-one monohydrate

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, the water O atom is involved in intermolecular hydrogen bonds which link the molecules into a three-dimensional network.

## Comment

The title compound, (I), was extracted from Scutellaria rehderiana Diels with acetone (Su et al., 2004; Li \& Chen, 2005). Recently, the compound was successfully crystallized from ethyl acetate. The molecule is essentially planar, except for the methoxy methyl group. The dihedral angle between the two benzene rings is $1.5(2)^{\circ}$ and between the C5-C10 and O1/ $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$ planes is only $0.2(1)^{\circ}$. The torsion angle $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}$ is $-179.8(3)^{\circ}$.

(I)

Water atom OW acts as both a hydrogen-bond acceptor via HO4 from the hydroxy group O 4 and as a donor via atom $\mathrm{H} W A$ to carbonyl atom O 2 of the neighbouring molecule at $\left(-x-\frac{1}{2},-y+1, z-\frac{1}{2}\right)$, as well as with the neighbouring OW atom at $\left(x+\frac{1}{2},-y+\frac{1}{2},-z\right)$.



Figure 1
The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. H atoms are represented by circles of arbitrary size.

Received 3 January 2006
Accepted 17 January 2006

The interaction of atoms O 3 with O 2 is intramolecular and completes a closed six-membered ring. Water molecules link to form chains which, in turn, link the chromenone molecules, forming a hydrogen-bonded three-dimensional network.

## Experimental

The title compound was prepared according to the procedure for extracting Scutellaria rehderiana Diels (Su et al., 2004; Li \& Chen, 2005). At 283 K and under unventilated conditions, crystals appropriate for data collection were obtained by evaporation of an ethyl acetate solution over a period of one week.

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=302.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.7160$ (9) $\AA$
$b=16.551$ (3) $\AA$
$c=18.466$ (4) $\mathrm{A}_{\circ}$
$V=1441.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

## MAC DIP 2030K diffractometer

 $\omega$ scansAbsorption correction: none
4404 measured reflections
1825 independent reflections
1801 reflections with $I>2 \sigma(I)$

## Mo $K \alpha$ radiation

Cell parameters from 1825 reflections
$\theta=3.5-27.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, yellow
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.135$
$S=1.23$
1825 reflections
208 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0494 P)^{2}\right. \\
& +0.6551 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.059 (11)
Table 1
Selected geometric parameters ( $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

| $\mathrm{O} 2-\mathrm{C} 4$ | $1.262(4)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.401(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 2-\mathrm{C} 1^{\prime}$ | $1.466(4)$ | $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}$ | $1.394(5)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.378(4)$ | $\mathrm{C}^{\prime}-5^{\prime}$ | $1.383(5)$ |
| $\mathrm{C} 6-\mathrm{C} 7$ | $1.398(5)$ |  |  |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$ | $119.6(2)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $119.6(3)$ |
| $\mathrm{C} 8-\mathrm{O} 5-\mathrm{C} 11$ | $113.4(3)$ | $\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2$ | $121.4(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$ | $121.7(3)$ | $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}$ | $120.1(4)$ |
|  |  |  |  |
| $\mathrm{C} 11-\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9$ | $83.0(4)$ | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ | $-0.3(4)$ |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$ | $-179.5(3)$ | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ | $-179.8(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$ | $178.5(4)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$ | 0.82 | 1.88 | 2.609 (3) | 147 |
| $\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{OW}$ | 0.82 | 2.02 | 2.766 (4) | 151 |
| $\mathrm{O} W-\mathrm{H} W A \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.90 (5) | 1.93 (5) | 2.828 (3) | 177 (5) |
| $\mathrm{O} W-\mathrm{H} W B \cdots \mathrm{O} W^{\text {ii }}$ | 0.90 (9) | 2.03 (8) | 2.903 (3) | 161 (7) |

[^1]

Figure 2
The molecular packing of the title compound. Dashed lines indicate the hydrogen-bonding interactions.

Water H atoms were initially located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.92-0.98 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times (for methyl H) $U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: DENZO (Otwinowski \& Minor, 1997); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors acknowledge the financal support of the International Centre for Diffraction Data.

## References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, H.-B. \& Chen, F. (2005). J. Chromatogr. A, 1074, 107-110.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Su, Y. L., Huang, Y. \& Chen, Z. Y. (2004). China J. Chin. Mat. Med. 29, 863864.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

[^1]:    Symmetry codes: (i) $-x-\frac{1}{2},-y+1, z-\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$.

